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Molecular dynamics (MD) simulations were carried out to study the stress-strain diagrams of crystalline
and amorphous silica under different nonequilibrium conditions. The responses of a tensile load were
recorded in two cases. In one case, the system was not allowed to relax along the transverse direction
(null Poisson’s ratio), while in the other case, the deformations were allowed in directions perpendicular
to the strained one. The higher strength of crystalline silica as compared to amorphous silica resulted
from a different distribution of ring sizes. The results obtained for the inert failure strains and intrinsic
strength of the silica glass were in good agreement with the experimental data, and the nonlinear elastic
behavior of the glass was reproduced along with the effects of strain rate and temperature variation.
Elastic properties extracted from stress-strain diagrams also were compared with the properties calculated
by means of static methods and with experimental data.

1. Introduction

Mechanical properties and fracture mechanisms of silicate
glasses are of fundamental importance in designing materials
to comply with specific technological applications. Glasses
and ceramics are considered to be brittle materials because
they fracture without any appreciable deformation and by
rapid crack propagation with a direction very nearly per-
pendicular to the direction of applied tensile stress, producing
a relatively flat surface.1,2 The problem of prediction of the
initiation of brittle fracture and calculation of the energetics
of the process was first addressed in a pioneering work by
Griffith,3 then improved by Irwin4 and Barenblatt5 on the
basis of continuum mechanics.

The measured fracture strengths for most brittle materials
are significantly lower than those predicted by theoretical
calculations based on atomic bonding energies.6 This dis-
crepancy is explained by the presence of very small,
microscopic flaws or cracks that always exist under normal
conditions at the surface and within the interior of a material.
However, neither the path of the crack, nor its propagation
characteristics, nor the structure of the freshly formed
surfaces were addressed until atomic dynamics in high stress
regions became feasible. In the past decade, with the advent

of powerful computers and development of efficient algo-
rithms to implement atomistic computational techniques such
as molecular dynamics (MD), computer experiments were
carried out extensively to study fracture mechanisms.6–21

Experimental studies of brittle fracture in glasses have
shown that fracture processes may be separated into sudden
fracture and slow crack growth. In the latter, the environment,
especially water, is allowed to interact with strained bonds
at the tip of existing cracks and can induce physisorption
and chemisorption processes that weaken the bond and allow
the crack to advance slowly.22 Ab initio23 and semiempirical
molecular orbital24 studies have addressed the problem of
strain induced chemisorption processes at the crack tip, which
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control the slow crack growth phenomenon. Conversely, in
the rapid crack growth process, the crack is assumed to
propagate with no interaction with the environment. The MD
method is based on the calculation of particle motions, and
therefore, it is well-suited to describe the dynamics of crack
growth. However, because of the use of classical interatomic
potentials, it does not provide a good basis for studying
chemical reactions. Therefore, it is more suited to model the
rapid crack growth than the slow crack process.

Soules and Busbey7 first reported studies of sodium silicate
glass under both tension and compression conditions. They
used systems of ∼1000-2000 atoms with free surfaces
subjected to both uniaxial and biaxial expansions. In the case
of uniaxial strain, the strain was applied by displacing the
atoms close to the surface; atomic bonds were first elastically
stretched, and then a considerable plastic deformation was
found. A flaw was then formed that led to separation. The
stress-strain diagrams evidenced brittle fracture since the
tensile stress dropped rapidly after reaching the maximum
stress point. Kieffer and Angell8simulated rupture of the silica
glass structure by isotropic expansion through the application
of a negative pressure. After opening the bond angles, the
structure catastrophically fractured by developing a self-
similar void structure that was described by a fractal
dimension changing linearly with density.

Simmons et al.6,9–12,15 examined the fracture process of
vitreous silica and R-cristobalite in a systematic way. They
applied a uniaxial strain at different strain rates (5 × 109 to
1 × 1011 s-1) to glass samples of 3000 atoms and analyzed
the effect of strain rates on the stress-strain curves. The
application of the uniaxial strain was uniform throughout
the sample. Periodic boundary conditions were applied along
three directions, but they did not allow the system to relax
along the transverse directions leading to a null Poisson’s
ratio (ν ) 0). They observed that the strength of the glass
increased with increasing strain rates. This was attributed to
the fact that at lower strain rates, the sample has more time
to relieve its strain by structural rearrangement of atoms.
Four distinct regions were identified: (a) the elastic regime,
where stress increased linearly with strain, (b) a yield region,
where stress varied very slowly with strain, (c) a region
where there was a dramatic drop in the stress with increasing
strain, and finally (d) separation of the sample corresponding
to zero stress. The fracture was observed to consist of growth
and coalescence of preexisting voids in the structure. At low
strain rates, the strain added uniformly to the structure is
allowed to flow from higher density regions to lower ones,
leading to the coalescence of voids. They estimated the
critical void to be 4-4.5 Å in radius, depending on the strain
rate. Performing the same simulations with different potential
models, they found different values for intrinsic strength and
Young’s modulus, but no difference was observed in the
behavior of the strained glass samples. They concluded that
thefracturecontrolling theprocesseswaspotential independent.

Van Brutzel et al.19 studied the propagation of a crack in
silica glass by using multimillion atom simulations and the

potential developed by Vashishta et al.25 They created a
V-shaped notch on one edge of the simulation box and
subjected the box to an external strain by displacing atoms
in the top and bottom layers. They observed the growth and
coalescence of voids and pores with a radius of 50-60 Å
near the crack tip. The effect of the temperature also was
studied, and it was found that at high temperatures, some
voids grew in regions further away from the crack tip, leading
to secondary crack growth. Nakano et al.17 also performed
multimillion atom simulations to study the dynamics and
morphology of brittle cracks of amorphous silicon nitride
films, observing a similar fracture mechanism. In almost all
the works mentioned previously, a common finding is the
formation and coalescence of voids and pores that lead to
the brittle failure of strained glasses.

However, despite intense investigation, the fracture mech-
anism of brittle glasses is still controversial. An issue of
current interest is the possibility of plastic deformation at
crack tips in silicate glasses at room temperature. A recent
AFM study on silicate glasses undergoing fracture reported
the formation of plastic zones on the nanometer scale
(cavities 20 nm long and 5 nm deep).26 However, a
subsequent study of silicate glasses under similar conditions
did not produce such cavities.27

In this paper, a detailed study of the effects of (a)
relaxation of box sides perpendicular to the strained direction
(ν * 0), (b) temperature, (c) strain rate, and (d) starting
structure on the stress-strain diagrams of crystalline and
amorphous silica was performed to clarify the behavior of
stress-strain diagrams and the fracture mechanism under
different conditions. The analysis will be limited to flaw-
free and nonchemically mediated fractures.

2. Computational Procedures

A great benefit of MD simulations is that different systems may
be modeled with fully identical characteristics, except for the
starting structure. Therefore, we modeled both silica glass and silica
crystal, with the same force field. The silica crystal was chosen to
be �-cristobalite because it has a cubic symmetry with the same
mechanical properties along the three directions [100], [010], and
[001], a density of 2.19 g/cm3, and a structure composed of six-
membered rings that makes it most similar to the glass short-range
structure. Consequently, a comparison between glass and crystal
behavior only reflects the effect of order versus disorder on the
fracture process. Systems of 12 288 atoms of silica glass and
�-cristobalite were modeled using pairwise empirical potentials
developed by Pedone et al.,28 which have been demonstrated to
reproduce both structural and elastic properties of a wide range of
silicate crystals and glasses.28,29

A practical aspect of the simulation of �-cristobalite has to be
mentioned. In nature, �-cristobalite is a high temperature polymorph
and inverts to the R-form at low temperatures. For comparison with
glass, the simulation procedure requires that the (experimental)
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�-cristobalite structure be relaxed to zero stress at 300 K before
the tensile load is applied. The relaxation leads to a final density
of 2.22 g/cm3 and a thermally disordered structure due to a
contraction of 30° of the Si-O-Si angles, which are 180° in the
�-cristobalite structure. Thus, the simulated �-cristobalite structure
tends to assume the R-form, as expected, but the cubic periodic
boundary conditions, which were retained, do not allow complete
conversion. However, since we want to study the effect of the
different ring size distribution of the crystal with respect to the
one of the silica glass and since the ring size distribution of
�-cristobalite does not change after relaxation at room temperature,
this starting point is still acceptable. We call this R-form constrained
in the cubic cell amorphous-cristobalite hereafter.

Silica glass was obtained by a melt-quench process of the
experimental �-cristobalite. The system was heated at 6000 K, a
temperature more than adequate to bring it to the liquid state in
the framework of the adopted force field. The melt was then
equilibrated for 100 ps and subsequently cooled continuously from
6000 to 300 K in 1140 ps with a nominal cooling rate of 5 K/ps.
The temperature was decreased by 0.01 K every time step using a
Berendsen thermostat30 with the time constant parameter for the
frictional coefficient set to 0.4 ps. Another 100 ps of equilibration
at constant energy and 60 ps at constant pressure (P ) 0 kbar)
using the Berendsen algorithm30 was performed at 300 K.

The DLPOLY31 package was employed for MD simulations.
Integration of the equation of motion was performed using the
Verlet leapfrog algorithm with a time step of 2 fs. Coulombic
interactions were calculated by the Ewald summation method32 with
a cutoff of 12 Å and an accuracy of 10-4. The short-range
interaction cutoff was set to 6.0 Å.

To determine stress-strain curves, the samples were subjected
to uniaxial tensile loading through gradual elongation. Sample
deformation was achieved via a stepwise displacement of atoms, r
) (1 + ε)r0, where r and r0 are the displaced and previous positions
of an atom at each time step, and ε is the applied strain. The effect
of strain rate on stress-strain diagrams of vitreous silica at 300 K
was tested using two strain rates, ε̇ ) 1 × 108 s-1 (SR1) and ε̇ )
1 × 109 s-1 (SR2). These rates are 2 and 3 orders of magnitude
faster than the regime of dynamic or shock loading accessible to
experiment.33 Very fast strain rates are common in simulation work
since lower rates require a more difficult computational effort. To
our knowledge, SR1 is the slowest strain rate used so far.

Parallelepiped periodic boundary conditions (PBC) were applied
along all directions. In previous MD studies, fracture mechanisms
were studied, keeping the directions perpendicular to the strained
one fixed at the initial value.6,9–12,15 MD simulations of this type
have a null Poisson ratio, and they will be denoted hereafter as
constrained simulations (CS). These simulations impose artificial
restrictions to the deformation events. Therefore, the code was
modified to allow the directions perpendicular to the strained one
to relax anisotropically. We refer to these simulations as uncon-
strained simulations (UCS). They can be easily performed using
the Berendsen barostat.34 Cell vectors and coordinates were scaled
by the η tensor, which is defined by

η ) 1 - �∆t
τP

(Pext1 - σ) (1)

where � is the isothermal compressibility of the system, ∆t is the
integrator time step, τP is the rise time of the barostat, and Pext is
the applied pressure. The component of this tensor along the loading
direction is set equal to 1 to keep the direction strained while the

others are free to relax. The Berendsen thermostat was applied
simultaneously, and four or five iterations were used to obtain
convergence.

The components of the stress tensor are calculated by

σR� )- 1
V

(∑
i

piRpi�/mi +∑
i

riRfi�) (2)

where piR, riR, and fiR are, respectively, the R component of the
momentum, position, and force acting on the i-th particle with mass
mi. The true stress tensor calculated by eq 2 was transformed into
a nominal (or engineering) stress tensor whose normal components
are defined by σnom ) σtSi/S0, in which Si and S0 are the
instantaneous and initial cross-sectional area perpendicular to the
loading direction. After the stress-strain diagrams were produced,
the elastic properties were obtained by direct analysis of curves.
All tests were performed at constant temperature and zero external
pressure. Thermal effects for silica glass were investigated by
performing the simulations at three different temperatures: 100, 300,
and 700 K.

Another important property easily obtained by MD simulations
is the thermodynamic surface energy γt, which is the energy
required to create a unit area of surface. It is defined by the relation

γt )
Eb -Ef

2A
(3)

in which Eb, Ef, and A are the bulk energy, the energy after fracture,
and the surface area, respectively. However, the thermodynamic
surface energy γt is different than the fracture surface energy (which
is defined as the energy required to create a unit area of surface by
fracture) routinely measured by experiments. In fact, the latter is
not a function of state, and it depends upon the intermediate
processes as plastic deformation and chemical reactions about the
tip of the crack. Therefore, the fracture surface energy (γf) also
was calculated by the relation

γf )
∫
0

xf

Fdx

2A
(4)

in which the numerator represents the total work done to fracture
the sample. In both cases, the value of the surface area corresponds
to a perfectly flat surface neglecting that real surfaces are rough.
Hydrostatic compression of the samples at the rate of 5 bar/ps was
carried out at 300 K for 20 ps, and the bulk modulus B was obtained
according to the thermodynamic formula B ) -V(dP/dV)T.

The elastic properties (Young’s modulus E, shear modulus G,
bulk modulus B, and Poisson’s ratio ν) of the MD simulated glasses
also can be obtained according to the static method, which requires
that the energy is minimized using the GULP code.35 The stiffness
matrix elements for a crystalline system are defined as the second
derivative of energy U with respect to the strain tensor compo-
nents.36 Once the stiffness matrix is obtained, several related
mechanical properties of anisotropic materials can be derived from
their matrix elements or from the matrix elements of the compliance
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matrix. The procedure to calculate elastic properties by using static
methods was described fully in previous papers.28,29

3. Results and Discussion

The results of structural studies, together with the vibra-
tional density of states (VDOS) and the elastic properties of
vitreous silica, obtained by making use of the potential model
employed in this work, already were reported in previous
papers.29,37 They will be summarized here for the sake of
completing the discussion of the results obtained in this work.

The computed total correlation function T(r) broadened
using the method by Wright et al.6 was shown to match the
experimental one reported by Grimley et al.38 with an Rx

factor of 5.5%, and no defect sites or oddly coordinated
oxygen and silicon atoms were detected. The calculated
Si-Si distance (3.140 Å) was slightly longer with respect
to the experimental value (3.077 Å). Si-O and O-O
distances of 1.62 and 2.63 Å compared well with experi-
mental data of 1.608 and 2.626 Å as well as an O-Si-O
bond angle of 109 ( 7° (109.5 ( 4° from neutron diffraction
data). Larger differences were found for the Si-O-Si bond
angles, which averaged 152° as compared to NMR data of
146.7°.39 After constant pressure relaxation at 300 K, the
glass showed a slightly higher density (2.26 g/cm3) with
respect to experimental data (2.20 g/cm3) due to a slight
decrease in the Si-O-Si angle.

Table 1 reports the ring size distributions obtained in the
present work for both �-cristobalite and silica glass with the
latter showing a broad Gaussian shape function centered at
the seven-membered rings. We noted previously that the
broadening of the ring size distribution in modeled glasses
can be overestimated.37

3.1. Intrinsic Strength in Amorphous-Cristobalite. Fig-
ure 1a shows the stress-strain diagrams for amorphous-
cristobalite for the CS (ν ) 0) and UCS samples (ν * 0)
with ε̇ ) 1 × 109 s-1 (SR2), in which the strain was applied
along the [001] direction. The diagrams show similar features
exhibiting a hardening of the stress-strain ratio with
increasing strain. Differences were encountered in the
intrinsic strength and strain at failure in the two cases. The
system appears to be softer in UCS. The intrinsic strength
is σ* ) 27.4 GPa, and the material fails at a strain of 0.367.
On the other hand, in CS, the material breaks at a strain of
0.335 with σ* ) 34.4 GPa. In both cases, the fracture
mechanism is brittle, as expected, and the stress instanta-
neously drops after the maximum. Because of the transla-
tional symmetry of the structure, the interatomic bonds have
equal resistance to the applied strain since the atoms are

subjected to the same local environments throughout the
lattice. At maximum load, the structure fractures catastrophi-
cally because of the instantaneous breaking of the Si-O
bonds.

Figure 1b shows the average Si-O bond length as a
function of strain along the [001] direction. This plot has a
very similar shape to the stress-strain diagram with the CS
having more strained Si-O bonds. Figure 2a shows changes
in the x- and y-dimensions as a function of the strain along
the z-direction for UCS. As expected, the changes are equal

(37) Malavasi, G.; Menziani, M. C.; Pedone, A.; Segre, U. J. Non-Cryst.
Solids 2006, 352, 285.

(38) Grimley, D. I.; Wright, A. C.; Sinclair, R. N. J. Non-Cryst. Solids
1990, 119, 49.

(39) Clark, T. M.; Grandinetti, P. J.; Florian, P.; Stebbins, J. F. Phys. ReV.
B: Condens. Matter Mater. Phys. 2004, 70, 64202.

Table 1. Ring Size Distributions of �-Cristobalite and Silica Glass Reported as a Fraction of Ring Numbers in the System

n-fold 2 3 4 5 6 7 8 9 10 11 12

�-cristobalite 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
silica glass 0.00 0.00 0.04 0.14 0.25 0.27 0.17 0.10 0.02 0.01 0.00

Figure 1. (a) Stress-strain diagrams of amorphous-cristobalite strained
along the [001] direction in which the [100] and [010] directions were
constrained to initial values (dashed line) or free to relax (solid line). (b)
Average Si-O bond length as a function of strain along the z-direction.

Figure 2. (a) x- and y-side lengths of amorphous-cristobalite as a function
of strain along the z-direction and (b) average Si-O-Si bond angle of
amorphous-cristobalite as a function of strain along the z-direction for
constrained (dashed line) and unconstrained (solid line) simulations.
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along both axes, even though the algorithm allows for
anisotropic relaxation. An anomalous change is seen for a
z-strain of up to 0.1. The x- and y-side lengths show a
maximum at 0.1, after which the two lengths decrease until
rupture. The same trends were found for the average
Si-O-Si angle as a function of z-strain. As previously
discussed, this anomaly is an artifact due to the starting
amorphous-cristobalite configuration. When the strain in the
z-direction is equal to 10%, all the Si-O-Si angles are
reopened at 170-180°, and the structure reassumes the
�-form (see Figure 3). Figure 3 also shows that once broken,
the material adopts the R-form (because of the temperature
of simulation).

In CS, the x- and y-side lengths are constrained to their
initial values, and the change in the average Si-O-Si angle
shows a completely different behavior. In fact, the angle
opens until rupture of the Si-O bonds. In both cases, the
hardening of the stress-strain diagrams after a strain of 0.1
is due to the fact that at lower strains, the applied strain is
taken up by Si-O-Si angle opening, with the Si-O bond
lengths increasing slowly; subsequently, the strains are taken
up by an increase in bond length. Thermodynamic surface
energies also are dependent on the PBC constraints; in fact,
γt for UCS is 3.9 J/m2 as compared to 2.7 J/m2 for CS.
Similar findings were encountered for the fracture surface
energy, with γf being 17.0 and 14.1 J/m2 for the UCS and
CS cases.

The previous observations raise the question concerning
the behavior of R-cristobalite under tensile tension. Thus,
some additional simulations on R-cristobalite were per-
formed. After straining the R-form along the three lattice
vectors ([100], [010], and [001]), we observed that the Rf
� transformation occurred when the unit cell was strained
along the [001] direction. Moreover, when strained along
the [001] direction, R-crystobalite showed a negative Poisson
ratio.

R-Cristobalite is known to be an auxetic material (materials
that exhibit negative Poisson ratios) since 1992 when the
auxetic behavior for loading in certain directions was
independently discovered and reported by Keskar and
Chelikowsky40 who studied this mineral using ab initio

modeling techniques and Yeganeh-Heeri et al.41 who mea-
sured the single crystalline mechanical properties of R-cris-
tobalite experimentally using brillouin spectroscopy. There
have been various attempts to explain this unusual behavior
of R-cristobalite.42–44 We consider that it is very satisfactory
that our simulations reproduce this property, but we will not
discuss this interesting point further here since it is not the
focus of this paper.

3.2. Stress-Strain Diagrams of Silica Glass. Figure 4
shows stress-strain relations of silica glass for the CS and
UCS simulations obtained at strain rate of ε̇ ) 1 × 108 s-1

(SR1) and T ) 300 K. We note that the diagram exhibits all
four regions defined previously. Figure 4b shows the average
Si-O bond length as a function of strain. As for amorphous-
cristobalite, the plot has a similar shape to the stress-strain
diagrams. Similar features were found in the average
Si-O-Si angle as a function of strain displayed in Fig-

(40) Keskar, N. R.; Chelikowsky, J. R. Nature (London, U.K.) 1992, 358,
222.

(41) Yeganeh-Haeri, A.; Weiner, D. J.; B, P. J. Science (Washington, DC,
U.S.) 1992, 257, 650.

(42) Alderson, A.; Alderson, K. L.; Evans, K. E.; Grima, J. N.; Williams,
J. Metastable Nanocryst. Mater. 2005, 23, 55.

(43) Alderson, A.; Alderson, K. L.; Evans, K. E.; Grima, J. N.; Williams,
M. R.; Davies, P. J. Phys. Status Solidi B 2005, 242, 499.

(44) Grima, J. N.; Gatt, R.; Alderson, A.; Evans, K. E. J. Mater. Chem.
2005, 15, 4003.

Figure 3. (a) At 300 K, �-cristobalite tends to assume the R-form, but the cubic PBCs do not allow the transition. (b) At 0.1 strain, the structure reassumes
the �-form, and the x- and y-sides expand. (c) At failure strain, the structure is stretched at the stability limit. (d) Structure breaks catastrophically and tends
to reassume the R-form. The (110) plane is viewed, and the structures are stretched along the z-direction (001).

Figure 4. (a) Stress-strain diagram of silica glass for the CS system (dashed
line) and UCS one (solid line). (b) Average Si-O bond length as a function
of strain.
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ure 5a. The CS system shows a greater opening of the angle
with respect to the UCS. In fact, the maximum value,
corresponding to the failure strain in which the material
breaks catastrophically, is 157° for CS and 153° for UCS.

Figure 5b shows the x- and y-box side length variations
for silica glass as a function of strain. As expected, the
directions perpendicular to the strained direction shrink
continuously and isotropically until 0.2 strain; at 0.3 strain,
the side lengths stop decreasing and begin to increase as the
two new surfaces are formed.

3.2.1. Elastic Region. In the elastic region, the longitudinal
stress and longitudinal strain are linearly dependent, and
Young’s modulus is the proportionality constant. Outside of
the elastic region, the nonlinear stress-strain behavior can
be described by the following equation where the terms
containing powers of strain higher than the third are
excluded:45,46

σ(ε))E0ε+ (E1/2)ε2 + (E2/6)ε3 (5)

Here, E0 is the conventional (zero strain) Young’s modulus.
It is common to define a generalized Young’s modulus as
the ratio between the stress and the strain also outside of
the elastic region. The strain dependence of the generalized
Young’s modulus is readily obtained by differentiating eq 5

E(ε))E0 +E1ε+ (E2/2)ε2 (6)

Figure 6 shows the (nonlinear) behavior of silica glass as
a function of strain for the two simulations. The plots were
obtained by fitting the initial region of the stress-strain
diagrams reported in Figure 4a up to a strain of 12% with a
third-order polynomial. In both UCS and CS cases, the fit
resulted in an R2 value of 0.9996 with a standard deviation
of 0.60-0.65. The values of the different expansion coef-

ficients are reported in Table 2. Figure 6 also reports the
curves obtained by Gupta and Kirkjian47 by fitting experi-
mental data with a third-order polynomial.

Each plot shows that the Young’s modulus increases with
strain up to a maximum and then decreases at higher strains.
Generally good agreement was found with the experimental
data for both CS and UCS. The UCS sample has Emax )
89.0 GPa at εmax ) 0.064 as compared to 98.8 and 0.07 found
by Gupta and Kirkjian.47 The CS sample shows Emax ) 99.0
GPa at εmax ) 0.054. Gupta and Kirkjian47 fitted the data
using Young’s modulus at zero strain of 72 GPa, which
compares quite well to the values found in our simulations,
69.9 and 76.9 GPa for UCS and CS, respectively.

A detailed analysis of MD trajectories revealed that there
is no breaking of Si-O-Si bridges until the maximum in
the stress-strain diagram, and as shown in Figure 4b, the
stretching of the Si-O bond and, as a consequence, bending
of Si-O-Si angles are responsible for the shape of the
diagram. Since the results of ab initio calculations show that
the Si-O-Si bending constant is negligible,48,49 the harden-
ing of Young’s modulus with strain is likely to be due to
the change in the average Si-O bond length with strain,
which is dependent on the anharmonic portion of the
attractive interatomic potential model.

(45) Mallinder, F. P.; Proctor, B. A. Phys. Chem. Glasses 1964, 5, 91.
(46) Hiki, Y. Ann. ReV. Mater. Sci. 1981, 11, 51.

(47) Gupta, P. K.; Kurkjian, C. R. J. Non-Cryst. Solids 2005, 351, 2324.
(48) Catti, M.; Civalleri, B.; Ugliengo, P. J. Phys. Chem. B 2000, 104,

7259.
(49) Sierka, M.; Sauer, J. Faraday Discuss. 1997, 106, 41.

Figure 5. (a) Average Si-O-Si bond angle of silica glass as a function of
strain along the z-direction for the UCS simulation. After rupture, the
Si-O-Si angle drops down to 149° because of the formation of small rings
at the surfaces, which have very small bond angles. (b) x- and y-side lengths
of silica glass as a function of strain along the z-direction.

Figure 6. (a) Plot of Young’s modulus (GPa) vs strain for UCS (solid line)
and CS (dashed line) simulations for silica glass. The dotted line is the
best fit obtained by Gupta and Kirkjian47 with a third-order polynomial to
the experimental data of silica fibers.59 (b) Plot of bulk modulus vs
hydrostatic pressure for silica glass at 300 K.

Table 2. Values of E0, E1, and E2 Modulus (GPa) for Silica Glass
Calculated from a Third-Order Polynomial Fit (Strain Range of

0-12%) of Stress-Strain Diagram at 300 K and Using SR1a

fit params E0 E1 E2 R2 SD

exptl47 72.3 772 -13058 NR NR
UCS 69.9 616 -9778 0.9996 0.60
CS 76.9 816 -15379 0.9996 0.65
a SD: standard deviation and NR: not reported.
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The observation of a maximum in E(ε) is in agreement
with independent observations of a minimum in the bulk
modulus-pressure plot reported in Figure 6b and found
experimentally.50 Huang et al.51 associated this anomalous
mechanical behavior of silica glass with a gradual structural
transition similar to the R-� phase transition of cristobalite
due to the rotation of the Si-O-Si bridge around the Si-Si
axis.

3.2.2. Intrinsic Strength. Differences in the stress-strain
diagrams were encountered for vitreous silica in CS and UCS
samples. In fact, the constrained system has a greater
stiffness, higher intrinsic strength (σ* ) 11.7 GPa), and lower
strain at failure (ε* ) 13.4%) with respect to the uncon-
strained one, which has σ* ) 10.8 GPa and ε* ) 15.3%.
These values are in generally good agreement with experi-
mental values at room temperature. In fact, Smith and
Michalske52 measured 11-14 GPa at room temperature and
in vacuum (P ) 10-8 Torr) in tension. Bogatyrjov et al.53

measured a tin-coated silica fiber at room temperature and
found a value of 14.5%, which corresponds to 10.2 GPa using
E ) 70 GPa. Despite the use of the same Si-O interatomic
forces for silica glass and amorphous-cristobalite, the latter
shows a 3 times greater intrinsic strength with respect to
vitreous silica. This is a consequence of the different ring
size distribution reported in Table 1. The distribution for
vitreous silica is much broader.

3.2.3. Unstable Region. Figure 4 shows that, once the
intrinsic strength is reached, the two systems, CS and UCS,
behave in different ways. While the CS system clearly breaks
catastrophically, the UCS system shows some recovery of
the structure. Figures 7 and 8 show the formation and
evolution of the crack for the two systems. In the CS system
(Figure 7), a sequential breaking of the Si-O bonds occurs
and results in the rapid formation of three large voids that
coalesce more or less instantaneously to break the material
in just 0.2 ns.

Conversely, for the UCS system, there is a gradual
breaking of Si-O bonds that can then rearrange through the
conformational and topological changes of the rings in the

structure. In fact, the shape of the ring size distribution
changes during deformation. The sharp Gaussian centered
at six- to seven-membered rings becomes broader because
of the formation of smaller and larger rings accommodating
the voids that grow and coalesce until separation of the
material. This phenomenon was observed during 1.4 ns of
the simulation and terminated when the strain reached the
final value of 0.4. However, from a practical point of view,
both 0.2 ns (CS) and 1.4 ns (UCS) time frames are
instantaneous, even if the behavior is somewhat different.
Therefore, even the UCS system shows a brittle fracture.

The growth of critical voids as a function of strain for the
CS and UCS systems was studied. A void can be defined as
a region enclosing empty space. In this work, it is assumed
that the voids are spherical and that atoms are point particles
with no volume so that our results can be compared to the
ones reported by Muralidharan et al.15 The void size
distribution was computed using an algorithm, previously
developed by us, based on Voronoi-Delanuay tessellation.37

Figure 9 shows the radius of the biggest void (BV) as a
function of strain for CS and UCS systems. At zero strain,
the radius of the BV is ∼3.9 Å. As was shown by
Muralidharan et al.,15 the BV strain curves have three distinct
regions, similar to the corresponding stress-strain curves.
Region I is characterized by a linear growth in size of the
BV that can be related to the elastic deformation of voids
because of the enlargement of the Si-O bonds and Si-O-Si
bond angles. In region II, the growth stops and the BV size
appears to be constant with increasing strain. However, in
the CS case, greater fluctuations are present as well as a
discontinuity between region I and region II; these are not
shown in the UCS case. The fact that the size of the BV
does not increase continuously combined with the strain
independency of the stress implies that the excess strain is
distributed in such a way that only the smaller voids grow
via structural rearrangement. Finally, region II is followed
in the CS case by a rapid increase in the size of the BV
(region III), and once a void with a critical radius (4.7 Å) is
formed, then the material breaks instantaneously. On the
other side, in the UCS case, the BV increased gradually from
4.4 at εmax to 5.1 at a strain of 0.20, after which it increased
rapidly.

From the previous analysis, the values of 4.7 and 5.1 Å for
the critical void radius were obtained in the CS and UCS cases,
respectively. These values are slightly greater than those
reported by Muralidharan et al.,15 who found a critical void of

(50) Kondo, K.; Iio, S.; Sawaoka, A. J. Appl. Phys. 1981, 52, 2826.
(51) Huang, L.; Duffrène, L.; Kieffer, J. J. Non-Cryst. Solids 2004, 349,

1.
(52) Smith, W. A.; Michalske, T. M. DOE Contract DE-AC04-0DPOO789,

1990.
(53) Bogatyrjov, V. A.; Bubnov, M. M.; Dianov, E. M.; Prokhorov, A. M.;

Rumyantsev, S. D.; Semjonov, S. L. JETP Lett. (Engl. Transl.) 1988,
14, 383.

Figure 7. Catastrophic breaking of the CS system.
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4.0 Å for a strain rate of 5 × 109 s-1 but with smaller simulation
boxes containing ∼3000 atoms. However, our results are still
not comparable to the cavities that are 20 nm long and 5 nm
deep reported by Célarié et al.26 because of the relatively small
box size used in our simulations (5.6 nm).

The combination of void size analysis and graphical
inspection of the trajectory during the stress-strain experi-
ment simulation allows us to explain the microscopic events
shown in Figures 4a and 5b). In the region around the
maximum stress (between ε ) 0.15 and ε ) 0.2), the small

Figure 8. Formation and evolution of crack for the UCS simulation, nanoseconds of MD trajectory, and percent strain are reported. Micropores developed,
and they coalesced to release the stress.

Figure 9. Growth of critical void as a function of strain for CS and UCS
simulations carried out at 300 K with a strain rate of 1 × 108 s-1.

Figure 10. Stress-strain behavior of the UCS system at different strain
rates and T ) 300 K.
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voids are disposed far from one another; at ε ) 0.2, they
finally coalesce to voids with a critical radius, which expands
until ε ) 0.3. At this value, the discontinuity occurs in the
x- and y-variations as a function of strain (Figure 4b). For
strain values greater than ε ) 0.3, the glass can be considered
to be already broken, and the x- and y-side lengths re-expand
until separation is complete.

3.2.4. Effect of Strain Rate on Stress-Strain Diagrams
of Silica Glass. Figure 10 shows the dependence of the
stress-strain diagrams as a function of strain rate at T )
300 K. As found by Muralidharan et al.,15 the intrinsic
strength and strain at failure increased with increasing strain
rate both for CS (not shown here) and UCS samples, while
the elastic region seems to be independent of strain rate. This
is probably due to the rather low values of the strain rate we
used, in the range of 108 to ∼109 s-1. In fact, Simmons et
al.,6,9–12,15 using a faster strain rate between 5 × 1010 and 5
× 1012 s-1, found that the elastic region appeared to be
independent of strain rate only for the lower strain rates. At
higher strain rates, the modulus appeared to increase with
strain rate. They also observed that a different mechanism
of fracture occurred for different strain rates. At very high
strain rates, the applied strain was taken up by the increase
in bond lengths, while for low strain rates, the strain was
first related to the increase of bond angles and subsequently
to the increase in bond lengths.

The dependence of the intrinsic strengths, the strains at
failure, and the fracture energies for both CS and UCS
samples as a function of strain rates are reported in Table 3.
These results agree quite well with experimental findings,
which show that the strength in brittle materials increases
by increasing the strain rate.54

For the CS case, the thermodynamic surface energy
calculated according to eq 3 is independent of the strain rate
as well as temperature. Conversely, for the UCS case, the
thermodynamic surface energy is dependent on both strain
rate and temperature. Thermodynamic surface energy γt

increases with decreasing strain rates and increasing tem-
perature. Table 3 shows that fracture surface energy calcu-
lated according to eq 4 is strain rate and temperature
dependent, in both cases. In fact, for the UCS system, γf

increases with decreasing strain rate and increasing temper-
ature, while for the CS system, it shows an opposite trend.

Experimentally, fracture surface energies of vitreous silica
range from 3.70 to 5.0 J/m2 according to the test method

employed.55 These values are quite different from those
found in our study because of several factors: different
environments (i.e., vacuum in MD simulations and moisture
in experiments), different values of strain rates that are much
lower in the real word, intrinsic limitations of computer
simulations, such as the use of periodic boundary conditions
with a small number of atoms, and, here, the lack of external
surfaces in the staring configurations. Although the absolute
values of thermodynamic fracture surface energy calculated
by computer simulations are not comparable to the experi-
mental fracture surface energy, preliminary simulations of
soda-lime glasses that are currently in progress in our
laboratories have shown that the relative trends with different
compositions are well-reproduced.

3.2.5. Effect of Temperature on Stress-Strain Dia-
grams of Silica Glass. Table 3 and Figure 11 show how the
stress-strain diagrams of UCS and CS systems are affected
by temperature changes. At 100 K, the strength of silica glass
increases to 12.2 GPa with a failure strain of 16.3% for the
UCS system, while in the case of the CS system, the intrinsic
strength increases to 13 GPa with a failure strain of 15.2%.
These are in generally good agreement with inert intrinsic

(54) Pollock, J. T. A.; Hurley, G. F. J. Mater. Sci. 1973, 8, 1595.
(55) Lucas, J. P.; Moody, N. R.; Robinson, S. L.; Hanrock, J.; Hwang,

R. Q. Scripta Metall. Mater. 1995, 743.

Table 3. Mechanical Properties Extrapolated from Stress-Strain Diagrams of Silica Glass When Perpendicular Direction of Tensile Stress Is
Kept Fixed and Free to Relaxa

constrained unconstrained

T (K) 100 300 700 300 100 300 700 300
ε̇ 109/s 109/s 109/s 108/s 109/s 109/s 109/s 108/s
E0 (GPa) 79.1 ( 0.3 78.0 ( 0.7 76.6 ( 1.0 76.9 ( 0.8 72.8 ( 0.3 69.4 ( 0.8 64.0 ( 0.8 69.9 ( 0.5
Emax/εmax 102.4/0.060 100.5/0.054 96.3/0.049 99.0/0.053 95.2/0.094 91.1/0.064 91.5/0.059 89.0/0.064
σ* (GPa) 13.0 12.3 10.9 11.7 12.2 11.4 9.7 10.8
ε* 0.152 0.144 0.139 0.134 0.166 0.164 0.143 0.153
γt (J/m2) 1.6 1.6 1.5 1.6 2.1 2.1 3.8 2.5
γf (J/m2) 3.8 3.6 3.3 3.2 5.3 5.5 6.5
a E0 is Young’s modulus at zero strain, Emax is the maximum of the E/strain diagrams, and εmax is the strain at maximum E. σ* and ε* are intrinsic

fracture strength and strain, respectively, while γt is the thermodynamic surface energy and γf is the fracture surface energy.

Figure 11. (a) Stress-strain behavior of silica glass at different temperatures
for the UCS system. (b) Stress-strain behavior of silica glass at different
temperatures for the CS system.
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strength measured experimentally. In fact, Proctor et al.56

measured 12-13 GPa at 77 K but 14 GPa at 4 K in tension.
France et al.57 measured a two-point bend strain of 18% at
77 K.

It is clear that both intrinsic strength and Young’s modulus
decrease as the temperature increases. At 700 K, there is
more plastic deformation in the case of the UCS system,
with respect to the CS system. The stress-strain curve
follows the elastic curve up to the yield point, and after the
maximum, the applied stress becomes constant, independent
of strain. However, this region is associated with the
constancy of the average Si-O bond length because of the
recovery allowed by density fluctuations and the rearrange-
ment of rings with different sizes present in the glass. To

study density fluctuations, the box was divided into 40 raw
cells along the strained direction, and the density inside the
cells was calculated as a function of strain (Figure 12). The
material density is not homogeneous along the strained
direction and varies discontinuously as a function of time,
and localized density fluctuations are shown until fracture
occurs. The heterogeneous density is related to the hetero-
geneous ring size distributions in glasses. The same plastic
behavior is observed at 300 K for smaller UCS systems of
∼3000 atoms. This observation suggests a size dependency
of the stress-strain diagrams that is not observed in the CS
case. Several tests should be performed with much larger
systems (hundreds of thousands of atoms) to check if this
size dependency occurs in the case of the UCS system.

(56) Proctor, B. A.; Whitney, I.; Johnson, J. W. Proc. R. Soc. London,
Ser. A 1967, 297, 534.

(57) France, P. W.; Duncan, W. J.; Smith, D. G.; Beales, K. J. J. Mater.
Sci. 1983, 18, 126.

Figure 12. Density fluctuation along strained direction (y) vs strain (x) for (a) UCS system and (b) CS system at 700 K.
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However, these calculations are outside the realm of our
computer resources at the moment and will be considered
in the future.

As expected, the elastic properties decrease with increasing
the temperature, leading to softening of the material (see
Table 4).

3.2.6. Elastic Properties: Strained MD Simulations
Versus Static Methods. Table 4 reports the values of elastic
properties E, G, B, and ν for silica glass, extrapolated from
the stress-strain diagrams of the UCS system with a strain
rate of 109/s, as compared to values calculated by means of
static methods,28 as well as to experimental data. The results
obtained by means of static methods (MM-GULP) show
better agreement with experimental data, with typical errors
of 2, 5, 1, and 9% for E, G, B, and ν, respectively. This is
probably due to the fact that the potential parameters used
here were fitted to the structure and mechanical properties
of R-quartz using the static method28 and do not include
temperature effects. On the other hand, the results obtained
from MD simulations reveal that while Young’s modulus is
in generally good agreement, bulk modulus and Poisson’s
ratio are rather overestimated, probably because elastic
properties obtained from MD simulations explicitly include
thermal effects and kinetic energy. Moreover, the two
methods employ slightly different equations. Therefore, the
fact that the elastic properties extrapolated from stress-strain
diagrams show larger differences as compared to the
experimental data does not imply that the dynamic method

is worse than the static one; extrapolating from stress-strain
curves is an inherently less accurate approach. We note that,
as expected, the elastic properties decrease with increasing
temperature, leading to material softening.

4. Conclusion

The stress-strain behavior of crystalline and vitreous silica
was studied under different loading conditions. A completely
brittle fracture mechanism was observed for crystalline silica
both in the CS and in the UCS cases. However, different
mechanisms occurred during rupture of vitreous silica
depending on the constraints applied along the transverse
directions. The imposition of a null Poisson’s ratio led to a
brittle fracture in which the formation of voids and their
coalescence occurred in ∼0.2 ns.

When the x- and y-dimensions are free to relax during
tensile loading along the z-direction, the growth and coa-
lescence of the small voids are more pronounced. However,
because of the limited box dimensions, the critical voids that
led to the fracture were smaller than those observed experi-
mentally.26 Further simulations with 108-1010 atoms should
be carried out since the cavities that were found are at least
1 order of magnitude larger than the voids detected in our
simulations.

A negative Poisson’s ratio was found for R-crystobalite
due to the R f � phase transformation occurring when the
material was strained along the [001] direction. The intrinsic
strength of crystalline silica as compared to vitreous silica
highlights the paramount importance of ring size distribution
on the mechanical properties of the final material. The
anomalous behavior of silica glass as well as the effects of
temperature and strain rate on the stress-strain diagrams
were well-reproduced. Their behavior was found to be in
agreement with general experimental knowledge.
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Table 4. Elastic Properties Extrapolated from Stress-Strain
Diagrams as Compared to Properties Calculated by Static Methods

(MM-GULP) and Experimental Methods58

unconstrained MD

exptl MM-GULP 100 K 300 K 700 K

E (GPa) 72.50 70.90 72.8 69.9 64.0
G (GPa)a 31.25 29.60 28.3 27.4 25.4
B (GPa) 36.10 36.40 44.2 42.5 41.6
ν 0.160 0.175 0.286 0.277 0.260

a Shear modulus was calculated using the relation G ) E/{2(1 + ν)},
in which E and ν were extrapolated from the stress-strain diagrams.
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